American College of Physicians - Internal Medicine Meeting 2024
Boston, MA

Ultrasound-Guided Thoracentesis

Director:
Aaron J. Calderon, MD, FACP, SFHM

Alyssa V. Burkhart, MD, FACP, FHM

Alice Gallo De Moraes, MD, FACP

Emily Gilbert, MD

Sophia Raia, MD, MS, Resident/Fellow Member

Neil Winawer, MD, Member, SFHM

Shilpa Sridhar, Resident/Fellow Member

Timothy Yang, MD, Resident/Fellow Member
THORACENTESIS
April 18-20, 2024

Aaron J. Calderon, MD, FACP, SFHM
Director, Academic Department of Internal Medicine
Program Director, Internal Medicine Residency, Saint Joseph Hospital
Founder, GME Simulation/Procedural Skills Lab, Saint Joseph Hospital
Clinical Professor of Medicine, University of Colorado SOM
Aaron.Calderon@imail.org

Disclosure of Financial Relationships

Visit any speaker’s profile within the ACP Meeting mobile app or the meeting’s web platform to view disclosure of relevant financial relationships.
OUR TEAM

- Alyssa Burkhart, MD
 - Billings Clinic, Montana
- Alice Gallo de Moraes, MD
 - Mayo Clinic, Rochester
- Emily Gilbert, MD
 - Loyola University Chicago
- Shilpa Sridhar, MD
 - Ohio State University
- Sophia Raia, MD
 - National Jewish Health-Saint Joseph Hospital, Denver
- Neil Winawer, MD
 - Emory University-Grady Hospital
- Timothy Yang, MD
 - Kaiser Permanente Oakland Medical Center

Outline

- Relative Contraindications
- Optimal Site & Management
- Complications
Relative Contraindications

- PT and/or PTT ≥ 2x normal
- Platelet count ≤ 20,000 – 50,000
- Creatinine ≥ 6.0
- Unstable patient
- Infection over insertion site
- Mechanical Ventilation
- If doesn’t meet Light’s criteria for landmark
Coagulation & Hemostasis

- Coags & Platelet counts not routinely indicated
- Lower INR to 2-3 if on warfarin
- Transfuse platelets if less than 20,000
- Don’t routinely need to hold DOACS, LMWH, P2Y12 inh
- Caveats:
 1. Observational data
 2. Controversial (other countries recs differ)
 3. Assumes a skilled operator; use of ultrasound
 4. RISK vs BENEFIT
 5. Each patient is an “N of 1”

Thoracentesis Procedure

- Besides fluid must identify, diaphragm, inner chest wall and lung
- The lung is seen as an echogenic structure moving with respiration
Thoracentesis Procedure

- Look for the deepest pocket of fluid superficial to the lung
- Measure to determine needle depth

Anechoic Pleural Effusion
Pleural Effusion
Heart (LV)
Collapsed Lung
Spleen
Diaphragm
Plankton sign

Loculated Pleural effusion
Complications

- Pneumothorax
- Reexpansion pulmonary edema
- Intercostal artery laceration
- Bleeding
- Infection
- Vagal reaction

Pneumothorax Following Thoracentesis

A Systematic Review and Meta-analysis

Craig E. Gordon, MD, MS; David Feller-Kopman, MD; Ethan M. Balk, MD, MPH; Gerald W. Smetana, MD

Background: Little is known about the factors related to the development of pneumothorax following thoracentesis. We aimed to determine the mean pneumothorax rate following thoracentesis and to identify risk factors for pneumothorax through a systematic review and meta-analysis.

Methods: We reviewed MEDLINE-indexed studies from January 1, 1966, through April 1, 2009, and included studies of any design with at least 10 patients that reported the pneumothorax rate following thoracentesis. Two investigators independently extracted data on the pneumothorax rate, risk factors for pneumothorax, and study methodological quality.

Results: Twenty-four studies reported pneumothorax rates following 6653 thoracenteses. The overall pneumothorax rate was 0.0% (95% confidence interval [CI], 0.0%-0.2%). Pneumothorax was more likely following therapeutic thoracentesis (OR, 2.6; 95% CI, 1.8-3.8), in conjunction with preprocedural symptoms (OR, 26.6; 95% CI, 2.7-262.5), and in association with, although nonsignificantly, mechanical ventilation (OR, 4.6; 95% CI, 0.9-16.8). Two or more needle passes conferred a nonsignificant increased risk of pneumothorax (OR, 2.9; 95% CI, 0.3-20.1).

Conclusions: Iatrogenic pneumothorax is a common complication of thoracentesis and frequently requires chest tube insertion. Real-time ultrasonography use is a modifiable factor that reduces the pneumothorax rate. Performance of thoracentesis for therapeutic purposes and in patients undergoing mechanical ventilation confers a higher likelihood of pneumothorax. Experienced operators may have lower pneumothorax rates. Patient safety may be improved by changes in clinical practice in accord with these findings.

Complication Rate

Table 1: Complication rates of pleural aspiration by operator and image guidance

<table>
<thead>
<tr>
<th>Ultrasound guidance</th>
<th>Operator</th>
<th>Frequency of post-procedure pneumothorax</th>
<th>Frequency that a chest drain was required post procedure</th>
<th>Frequency of dry tap/procedure failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Radiologist in training</td>
<td>2.7%</td>
<td>1.8%</td>
<td>2.7%</td>
</tr>
<tr>
<td>Yes</td>
<td>Senior physician</td>
<td>3.0%</td>
<td>0.9%</td>
<td>3.2%</td>
</tr>
<tr>
<td>Yes</td>
<td>Radiologist</td>
<td>2.7%</td>
<td>0.5%</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Physician in training</td>
<td>15.0%</td>
<td>4.7%</td>
<td>12.9%</td>
</tr>
<tr>
<td>No</td>
<td>Senior physician</td>
<td>5.7%</td>
<td>1.4%</td>
<td>1.6%</td>
</tr>
</tbody>
</table>

The calculations and references used in this table are shown in appendix 1 in the online supplement.127-134

Tension Pneumothorax

- Chest pain, hypotension, tachycardia
- Emergent needle decompression
- Use no smaller than 3.25 inch 14 gauge needle
- Smaller needle size associated with high failure rate
- 2nd intercostal space; mid-clavicular line
2010 British Thoracic Society Guidelines

• Follow Up CXR?

• A chest x-ray after a simple pleural aspiration is not required unless air is withdrawn, the procedure is difficult, multiple attempts are required or the patient becomes symptomatic. (C)

Conclusions: “bedside ultrasound performed by clinicians had a higher sensitivity and similar specificity compared to CXR for the diagnosis of pneumothorax, but the accuracy of ultrasound depended on the skill of the operators.”

Chest 2011; 140(4):859-866
Pleural Line with lung sliding

Chest Wall

Lung

M-Mode at the Pleural Line

Lung Sliding Present

Lung Sliding Absent

CHEST WALL

Pleural Line

Sea Shore Sign

Barcode/Stratosphere Sign
Reexpansion Pulmonary Edema

- Very rare complication; mechanism unknown
- Dyspnea, tachypnea, cough, fever, tachycardia
- **Unilateral pulmonary edema** in lung that rapidly reexpands; can be bilateral
- Lung has typically been collapsed for ≥ 3 days
- Usually occurs within 3 hours of procedure; almost all by 24hrs
- May last 2-5 days
- “Rule of 3’s”
Reexpansion Pulmonary Edema

Treatment
- Supportive care (oxygen, mechanical ventilation)
- Diuretics not routinely recommended

Prevention
- Limit fluid removal to 1-1.5 liters (myth)
- Keep pleural pressure > than -20 cm H2O
- Chest tightness/discomfort correlates

Large-Volume Thoracentesis and the Risk of Reexpansion Pulmonary Edema

David Feller-Kopman, MD, David Berkowitz, MD, Phillip Boiselle, MD, and Armin Ernst, MD
Departments of Interventional Pulmonology and Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts

Background. To avoid reexpansion pulmonary edema (RPE), thoracenteses are often limited to draining no more than 1 L. There are, however, significant clinical benefits to removing more than 1 L of fluid. The purpose of this study was to define the incidence of RPE among patients undergoing large-volume (>1 L) thoracentesis.

Methods. One hundred eighty-five patients undergoing large-volume thoracentesis were included in this study. The volume of fluid removed, absolute pleural pressure, pleural elastance, and symptoms during thoracentesis were compared in patients who did and did not experience RPE.

Results. Of the 185 patients, 98 (53%) had between 1 L and 1.5 L withdrawn, 40 (22%) had between 1.5 L and 2 L withdrawn, 38 (20%) had between 2 L and 3 L withdrawn, and 9 (5%) had more than 3 L withdrawn. Only 1 patient (0.5%, 95% confidence interval: 0.01% to 3%) experienced clinical RPE. Four patients (2.2%, 95% confidence interval: 0.06% to 5.4%) had radiographic RPE (diagnosed only on postprocedure imaging without clinical symptoms). The incidence of RPE was not associated with the absolute change in pleural pressure, pleural elastance, or symptoms during thoracentesis.

Conclusions. Clinical and radiographic RPE after large-volume thoracentesis is rare and independent of the volume of fluid removed, pleural pressures, and pleural elastance. The recommendation to terminate thoracentesis after removing 1 L of fluid needs to be reconsidered. Large effusions can, and should, be drained completely as long as chest discomfort or end-expiratory pleural pressure less than −20 cm H2O does not develop.

Intercostal Artery Laceration

Unpredictable Intercostal Arteries

Intercostal Artery Laceration

Superior Rib
Rib Shadow
ICA
ICA
CoA
CoA
Inferior Rib
Rib Shadow
ICSL
ICSL

National Jewish Health | Saint Joseph | Intermountain Health
Thank You!

Aaron J. Calderon, MD, FACP, SFHM
Aaron.Calderon@imail.org